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Abstract

Extended non-linear BRS and Gauge transformations containing Lie alge-
bra cocycles, and acting on non-abelian antisymmetric tensor fields are con-
structed in the context of free differential algebras. New topological invariants
are given in this framework.

BRS transformations are known to yield the relevant symmetries of the quan-
tum action of gauge theories. As such, the BRS symmetries have turned out to
play a major role in the understanding of the occurrence of anomalies and of their
geometrical interpretation, see for example ref. (1], and references therein. We
will present in this note an extension of the usual BRS and gauge transformations,
for non-abelian antisymmetric tensor fields, and show how it can be used to con-
struct new topological invariants for these p—form gauge fields. A more detailed
description of most of the material presented here, together with an extended list
of references may be found in ref. [2]. However, some ideas and results, that may
be useful in the context of topological quantum field theories® are new. Our start-

ing point is the construction of a BRS algebra for p—form gauge fields in the frame
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work of free differential algebra (FDA ). We consider a graded commutative FDA
M8l connected in degree zero, i.e., M = Dp>o M, = Me@ M, Mo = K
being the ground field (R or C). We denote the differential by d. We now require
that M and J can be decomposed as d = d + s with d*> = s = sd + ds = 0 and
M = @p,, My, where p > 0,g > 0 p being the form degree with respect to d,
and q the form degree with respect to s. In addition, we also reqmre that the sub-
algebra M of M corresponding to the action of s, M = @g>0 M, is minimal,
ie, sMo4+ C Moy - Mo, Mo+ = Dg>1 Mo, A minimal FDA is obtained|5]
by extending the Maurer-Cartan forms in the dual G* of a Lie (super)-algebra G,
identifying AG* with Mg, and by adding new generators in degrees higher than
one. Choosing a basis {xZ} of G* and representations G(p) of G(G) = G), we in-
troduce at each level p > 2 sets of new generators x;. Now the subspace { of Mg ,
(dual of M,y ) defined by { = {w6M5'+;w(a1 -az)=0 V(al,az)eMo,+}, a canon-
ical Lie—(super) algebraic structure, with (graded) basis E,(p ).p > 1, and we have
dE® = (—1)P*1EP)d. We define elements of Mo+ ®¢ by x = Z‘pxpE(p) Note
that x anticommute with d. The more general action of s on x, M being minimal,

reads:

sx + Z C“” (Xy++,x) =0 (1)
p>2

where we have used multilinear maps C®) : AP{ — {,p > 2, which for consistency,

(8% = 0), verify p—cocycle conditions with respect to G and G(p),p > 2:
1

Z>2 mc(p) (Xa""X7C(q) (Xa"‘,X)) =0 (2)

Eq. (1) is a generalization of the Maurer-Cartan equation, with C®) extended to
Mo+ ® (. Now we will consider the case of a FDA M with generators .;L:','q and
F o in degree k (p' + ¢' — 1 = p + ¢ = k) such that /i;',,q = x;- Then defining
A=, ./-i;',’qE,(p *9) and F = Yioa f:'qE,(p +2-1) the action of d in M is given by:

dA+CY) = F and dF + CP(F)=0 (3)

where we have introduced the following compact notations:

C’ff)(vl, V)= C")(A A v, 0)
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Then, eq. (3) may be recasted in a very familiar form by using an operator formu-

lation that may be viewed as a generalized adjoint-action on M ®(; in fact, we

define .A:l and .7:: to be linear operators on M ® ¢ considered as a vector space as:
AWw) = C’S)(u), Fv)= Cf:) (.7.:', u)

dA+A-A=F and dF+A-F-F-A=0 (4)

where the products in eq. (4) are operator products. A decomposition of d,.4 and
F in d and s degrees leads to the d and s action on the M generators(?!. Note that
because of the minimality of M, (the FDA associated to s) we have 75 = 0.

We will obtain a BRS algebra from this bigraded FDA. We wish, in fact, to
consider s as the generator of BRS transformations. Hence, the degrees of form
with respect to s will become ghost degrees. Therefore, we identify the physical
field as the zero s-degree part of A and F, ie., A = Yip>1 ./i;',‘oEfp ) and F =
Tip>2 .7.:;"01*7,-(’ -1), the generalized gauge field and curvature respectively. We define
Y= Tipso .Ai;',’lE,-(p 1) and 6 = Tip>1 f;lE,g’ ), the ghost degree one part of A and
F, we have:

sA+dyp+ CQ(y) =6 (5)

Hence, the s—transformation of A contains a linear ghost term #. That means that
the general FDA M cannot be taken directly as the BRS algebra associated to A
and F. The reason is that the linear term 4 in eq. (5) would enable us to gauge
the fields \A and F to zero, therefore, leading to a pure gauge theory. In fact, the
space of s—transformations in M is so large that only a pure gauge theory would
be s-invariant. The idea for obtaining a non-trivial theory is indeed to reduce the
number of degrees of freedom of # and v by imposing a set of constraints invariant
by the actions of d and s. The procedure is first to construct bigraded ideals of M
and then to quotient M by such bigraded ideals. The resulting algebra is again a
bigraded differential algebra in which the restriction of d and s are uniquely defined
and verify s> = d® = sd + ds = 0. Such ideals can be obtained, for example, by
considering any element K of the s—cohomology in M, i.e., sK = 0, of homogeneous
s and d degrees, constructed from A and F. The subalgebra T(K) generated by
elements of the form K-P+dK-Q whereP and Q are any elements of M is an ideal of
M, stable under the action of d and s. The quotiented algebra M(K) = M/T(K)
exists and the action of d and s can be defined uniquely on it. .A;t(K ) is also a
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bigraded differential algebra. The ideal that leads to a non-trivial gauge theory for
a usual 1-form gauge field is given by f-'{'q = 0. Let us note the quotiented algebra
in this case by D;. The d and d cohomology are trivial in D; and it is possible to
construct d invariant in D; in the following way. As operators acting on a vector

space, it is possible to define a (super)-trace for polynomials of A and F. Then, we
n

have d tr(]::' ) = 0. The d—cohomology being trivial we obtain:
I® = tr(F ) = dJ™ (6)

where the J(®) may be obtained through standard homotopy formulas transposed
to our case. Expanding I(® and J(™) with respect to their ghost degrees (g) i.e.,
It = Y30 I‘g") and J(™ = T 050 Jé"), the constraint Ié") = 0 for ¢ > 1is a bigraded
ideal J of Dy, stable under the d and s actions. In the BRS algebra D;/J we have:

dJM =1 and sJM +dIM =0 (7)

Hence, Jé") is an s—invariant modulo d, containing the p—form gauge fields A and
F, that generalizes the Chern-Simons terms(®l. The BRS algebra associated with
topological theories constructed from I or Ji™ may be obtained from D; by quo-

tienting with an appropriate ideal.

References

[1] R. Stora, “Recent Progress in Gauge Theories,” eds. G. Lehman et al,,
Plenum, 1984, New York.; Zumino, B., “Relativity, Groups and Topology
II,” Les Houches 1983, eds. B.S. DeWitt and R. Stora, North Holland, 1984;
M. Dubois-Violette, M. Talon, C.M. Viallet, Comm. Math. Phys. 102, 105
(1985).

[2] S. Boukraa, F.W. Nijhoff, J.M. Maillet, “ On a Generalization of BRS and
Gauge Transformations,” Fermilab-Pub-88/37-T.

[3] E. Witten, Comm. Math. Phys., 117, 353 (1988).
[4] S. Boukraa, Nucl. Phys. B303, 237 (1988).

[5] D. Sullivan, Publ. Math. IHES 47, 269 (1977); P. Van Nieuwenhuizen, Lect.
Notes in Physics, 180, Springer 1983.

4



6] S.S. Chern, J. Simons, Proc. Nat. Acad. Am. Sci., 68, 791 (1971); Ann.
Math. 99, 48 (1974).



